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A procedure for eonstrueling integral estimates for the wave equation with a non-linearity concentrated in a certain local region 
of the system in question is presented. To obtain these estimates a knowledge of the solution of the linear homogeneous differential 
equation and the dynamiq~ of wave propagation in the system is required. The accuracy of the estimates depend considerably 
on the nature of the extel~al loads, their intensity and duration. It makes sense to consider this type of estimate for processes 
whose duration is comparable with the time taken for the wave to traverse the system, which is characteristic, for example, for 
explosive and shock phenomena, and also dynamic fracture. An example of the construction of wave estimates for a simple 
mechanical system is considered. © 1996 Elsevier Science Ltd. All fights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Many problems in the mechanics and physics of oscillations lead to an equation of the form [1] 

pii= L[ul+q, L[ul=div(pgradu) (1.1) 

with initial conditions 

ult=o=Uo(x) ,  l i l , = 0 = U 0 ( x ) . . r e V  (1.2) 

and mixed boundary conditions 

cu,+l~u/~nlav = 0, t>0 (1.3) 

where the unknown function u(x, t) de l]ends on n spatial coordinatesx = (xbx2 . . . . .  xn) (usually n = 1, 2, or 3) 
and the time t, and the coefficients p and p are governed by the properties of the medium and are independent 
of time. In view of their physical meaning we will assume that p0c) > 0 andp(x)  > 0; V C R n is the region where 
the process occurs, and BVis  its boundary, which we will assume to be a piecewise-smooth surface, ct and 13 are 
independent of t ,  and BV 0 is the part  of the surface ~Vwhere ~ x )  > 0 and It(x) > 0 simultaneously. 

The free term q expresses the intensity of the external force on the system. If it depends solely on the spatial 
coordinates and the time, the solution of the problem earl be found using well-known approaches [1]. 

The search for a solutiion becomes considerably more complicated if the intensity of the external forces q depends 
non-linearly on the solution itself and on the partial derivatives of this solution with respect to time and the spatial 
coordinates. Approxim~tte solutions and estimates therefore become important here. 

Below we present a procedure for constructing such estimates when the function q = q(x, t, u . . . .  ) is concentrated 
in a certain region D C V (Fig. 1), while outside this region q = 0. 

The estimate is constraeted using the solution Uo(X, t) of the linear hyperbolic homogeneous differential equation 
corresponding to (1) when q = 0, with the same initial and boundary conditions (1.2) and (1.3). This solution we 
will henceforth assume to be known. We will also assume that, for all the coefficients and functions considered in 
this paper, all the nece~;ary smoothness conditions are satisfied. 

2. I N T E G R A L  E S T I M A T E S  

We will assume that the non-linear problem considered is well posed and u(x, t) is its solution. We introduce 
the energy integral of the system [1] 

i t t ) = L  1 y ~ , i x ( ' r )dx+-  ~ p~_ u 'ds  
2 v 2 ~v ° [~ 

(2.1) 
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Fig. 1. 

ix(X)= pti 2 +p[ gradul 2 (2.2) 

which is the sum of the kinetic and potential energy of the system at the instant of time t = x, I(x) ~> 0 The following 
relation then holds [1] 

( i ) A(x)=I(x)-I(O) A(x) J qtidxdt (2.3) 
0 D 

which has an explicit physical meaning. 
For the instant of time x we will introduce the wave volume of the external actions ~o(x) as the set of all points 

x (x ~ 1/) encompassing perturbations due to the action of the external forces (which, by convention, are localized 
in the region D) in the time interval from t = 0 to t = x. This can be done since the velocity of propagation of the 
perturbations in the system (outside the region D) is C = (p/p)ltz and is finite. 

We will represent I(x) in the form of the sum of two terms 

l(x) = if(x)+ IN(x) (2.4) 

where/i(x) is the total energy of the wave volume Ddg(x ) and Iv(x) is the total energy of the remaining volume, 
unperturbed by the external forces, of the system considered. Since ll(x) >I 0 and assuming that ll(x) = 0, we obtain 
the following limit 

A(x) ~> I v (x) - I(0) (2.5) 

A feature of the last inequality is the fact that its right-hand side can be written in terms of the solution u0(x, t) 
of the homogeneous differential equation, since this solution is identical with the solution of the non-linear problem 
outside the wave volume of the external forces (more correctly, outside the region of influence D) [1], where the 
points of the system "know" nothing of the non-linear external action in the time interval from t = 0 to t = x. 

Hence, inequality (2.5) is the lower limit of the work done by the external forces for the non-linear system in 
the time interval from zero to x, or, in other words, the maximum value of the work which the system can perform 
in this time interval. 

3. T H E  W A V E  V O L U M E  O F  E X T E R N A L  A C T I O N S  

For the integral estimate (2.5) we need to know the wave volume of the external forces, in addition to the solution 
of the homogeneous differential equation. 

In a homogeneous medium (p and p are independent of the spatial coordinates x) the problem of finding the 
wave volume (more correctly, both for the regions of influence and dependence also reduces to a geometrical 
problem, namely, the construction of the external envelope of the spheres S(~, Cx), when ~ runs through 0D 
(Huygens' principle). This external envelope will be the boundary of the wave volume Oleo(x). Another method 
is to construct the wave rays. 

The dependence of the characteristics of the medium on the spatial coordinates changes the shape of the wave 
beams, but they remain perpendicular to the wave front. Here we can also use Huygens' principle to obtain the 
wave volume or directly integrate the system of ordinary non-linear differential equations for determining the 
trajectory of a wave ray [2]. Here it is necessary to take some care since the dependence of the medium characteristics 
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on the spatial coordin;ttes may lead to different wave effects, which must be taken into account when constructing 
the wave volume (the formation of shadow zones, waveguides, caustics, etc.). 

4. R E F I N E D  I N T E G R A L  E S T I M A T E S  

More accurate upper estimates of the value of the work of the system W(~) = -A(~) can be obtained by a non- 
trivial estimate of the total energy of the wave volume Ii(x) (we recall that initially this was assumed to be zero). 
We will consider one of the possible schemes for constructing such estimates. 

For an arbitrary poiint ~ of the wave volume of the external forces ~o(x), lying outside the region D, we will 
consider the total energy density it(x ) at the instant of time t = x, defined by (2.2). We will represent the function 
u = u(~, x) as the solution of homogeneous differential equation (1.1) with the following initial conditions 

ult=n=Un(x),  tiJt=n=Vn(x); xEag(Z) ,  g = x - r l  (4.1) 

Here D~(Z) is a region of the dependence ~ which should have no intersections with the region D, which can always 
be achieved by an appropriate choice of the instant of time ~ (0 < tl < z). If necessary (if D~(X) reaches the boundary 
of the system), the boundary conditions on the boundary 0V (1.3) close the formulation of the problem. In the 
case of a uniform mediLum with n = 1, 2, 3, these representations are given d'Alembert's, Poisson's and Kirchhoff's 
relations, respectively. 

The boundary of the wave volume of the external forces 3flo(~) at the instant of time t = 11 divides D~(X) into 
two regions (Fig. 2): in the first Un(x ) = Uo(X, ~) and Un(x ) = Uo(X, 11) are identical with the unknown solution of 
the homogeneous differential equation considered with initial and boundary conditions (1.2) and (1.3); in the second 
the initial conditions tln(x ) = Un(X, 11) and tln(x ) = Un(X, 11) are perturbed by the external non-linear forces. 

We will seek the lowest value of the total energy density functional using the corresponding representation of 
the solution u = u(~ 1:) 

ig(x.~)= in(ig(~) (4.2) 
u n • l t n  

provided the initial conditions are specified in a certain region by the known solution Uo(X, t), and are arbitrary 
outside this region. An additional condition is the continuity of the function u(x, t) on the boundary of the wave 
volume 3flo(rl) 

U n ( ~l'~ O ( "q ) , rl ) = Uo ( ~ '2  O ( TI ) , " q)  (4.3) 

which follows from pkysical considerations. 
The fact that this e~Lremal problem is m-posed may be due to two factors [1]: either the functional ig(x) has no 

lower limit on certain sets Mu and Ma, u. E Mu, a .  ~ M,~ (usually M= and M,; are sets of differentiable functions), 
or it has a lower limit but its lower boundary is not reached on M. The functional i~(x) obviously has a lower limit 
(for example, the zero value i~(x) t-- 0) and since a knowledge of the minimum element for this extremal problem 
is not required, it is well-posed and its solution can be found by well-known approaches [3]. 
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Fig. 2. Fig. 3. 
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This solution also depends on the parameter 11, and hence, from the parametric set of lower limits obtained, it 
is logical to choose the largest one, since it will be closest to the actual one, i.e. 

it(x) = max i¢(x,rl) (4.4) 

If one succeeds in obtaining a non-trivial solution for i~(x), then, by integrating over the whole wave volume 
(apart from the region D), we obtain a non-trivial estimate of the total energy of the wave volume 

It(% ) >~ I t ( z  ) = ~ i¢(x)d~ (4.5) 
flD(X)-D 

and the wave limit can be written as follows: 

A(x)  >~ I t ( x )+  i v ( x ) -  I(0) (4.6) 

5. E X A M P L E  

Consider the inhomogeneous one-dimensional wave equation 

p i i -  p32u l  ~x2 = q (5.1) 

which describes, for example, the oscillations of a uniform string (p andp  are constants) with clamped ends 

u(O) = u(t) = 0 ( 5 . 2 )  

where I is the length of the string. 
To fix our ideas, we will specify the following initial conditions 

ul t= 0 = Uo ( x ) = asinx and flit--0 = O o ( X ) : 0 (5.3) 

The external forces q acting on the system when t > 0, are concentrated at one point x = / /2  of the middle of 
the string and depend non-linearly on the system parameters. 

The solution of the linear homogeneous differential equation corresponding to (5.1) with the same boundary 
and initial conditions (5.2) and (5.3) describes a standing wave with an oscillation frequency t0 = (rd/)(p/p) lt2. 

For this example we obtain an upper limit of the work which the system can perform as a function of time. 
By (2.5) the limit of the work which the system W(x) = -A(x )  can carry out will have the form 

W(x) ~< i , - ~  (2rex + 1 sin 2o.rt cos 2tox) (5.4) 

One can improve the upper values (5.4) of the work which the system can perform at the cost of a non-trivial 
estimate of the total energy of the wave volume. 

For the point ~ * 1/2/and the instant of time x we introduce the total energy density by (2.2). 
Solving the variational problem (4.1)-(4.4) for the example considered, we obtain the lower limit of the total energy 

of the wave volume, which is then substituted into the estimate of the work done by the external forces (4.6). 
The results of the calculations are shown in Fig. 3, where curve 1 corresponds to the wave estimates (5.4) and curve 

2 corresponds to the refined wave estimates of the upper values of the work of the system as a function of time. 
A more interesting example of the use of wave estimates to solve problems of brittle dynamic fracture was 

considered in [4]. 
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